DOCUMENT SUBMISSION CHECK LIST

This check list must be completed by all students prior to submission to supervisors. If this is not provided or is incomplete, your document may be returned to you without feedback. If an item below is not relevant to your submission (e.g., your draft does not yet contain a Methods section), please enter NA under initials.

Purpose of this checklist: your supervisors are here to assist you with generating ideas, helping with structure and flow, etc. We are not spell-checkers and do not have time to remind students of small, but important details that should be completed as part of best practice. Many of these tasks have been identified below - you are therefore expected to complete them without our input.

<table>
<thead>
<tr>
<th>Student name</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Document & version (eg. draft ch1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal format/target</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of submission</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Task	**Initials**	**Date**
File appropriately named (eg. Lavers etal – FFSH plastic 31012019.docx) | | |
Manuscript title – informative, but broad focus on key concepts (species & locations often not included) | | |
Authors | | |
Appropriate order of appearance | | |
Names/affiliations complete/correctly formatted (ie. follow journal style) | | |
Comprehensive grammar and spell check completed | | |
Headings brief, informative, & follow journal style | | |
Line numbers included on every 5th line (only if journal requires this) | | |
Space between value & unit (e.g., 2 mm); use × not x | | |
Appropriate number of significant digits, precision of values consistent throughout manuscript | | |
Aims stated explicitly and professionally in last paragraph of introduction | | |
Sample sizes reported fully (n = x), including for any subsets of data | | |
Methods reported in sufficient detail to replicate data collection & analyses | | |
Statistical results reported in sufficient detail (e.g., F-values, df, p-values) | | |
All tables & figures are referred to in the text | | |
Table & figure titles/captions must be complete and informative (“stand alone”) | | |
Ensure correctly formatted (Figure or Fig., should this be in bold? Check journal requirements) | | |
ALL tables & figures must be presented at the end of the manuscript, after the References, and in the correct order. Limit the total # of tables & figs to <6 (ie. most important; theses can contain more) | | |
Acknowledgements | | |
All funding bodies listed | | |
All permitting bodies listed with relevant permit number | | |
All volunteers & other contributors listed (1st initial and surname only) | | |
Final sentence must thank “X anonymous reviewers for their feedback on earlier drafts” | | |
References (you must use Endnote or an equivalent reference manager) | | |
All in-text citations are listed in the References | | |
All references are included as in-text citations | | |
Correctly formatted: titles not capitalized, journals abbreviated where required, species names italicised, etc. Double check all references! | | |

Grant applications www.utas.edu.au/research-admin/divisional-resources/forms | | |
UTAS Clearance Form completed | | |
UTAS Costing Tool completed | | |
ALL documents must be reviewed by at least one of your peers (i.e., another student) before submitting to your supervisor(s) | | |
Manuscript submission advice from Michael White, an Editor with the journal Nature Climate Change:

“I’ve handled the review of > 1000 papers at Nature. Over time, you notice aspects of presentation on which reviewers tend to comment. In the interests of minimizing hassles during review, I offer the following suggestions (a bit targeted to climate papers)”

1. **Double space**: make it easy on the reader (and editor) by double spacing the entire text, including references and figure legends.

2. **Use big fonts**: again, make the paper easy to read. Tracking 30 words across one line in a tiny font is hard, especially if you are reading for hours at a time. Instead, use a font that provides about 12-15 words per line of text.

3. **Use continuous line numbers**: reviewers like to refer to specific line numbers and frequently comment on their absence.

4. **Avoid subjective wording**: reviewers will often object to words/phrases like “unprecedented”, “paradigm shift”, “amazing”, “dramatic”, and “remarkable”. Best to present your results, and let the readers make up their minds about the magnitude of the advance.

5. **Avoid acronyms** (unless they’re common, like SST): a rule of thumb might be to use an acronym if the term is used at least five times. Avoid, if at all possible, inventing acronyms that are unique to your paper.

6. **Avoid words like “influence”**: instead, **state the direction of the effect you’re describing**. So, instead of hypothetically writing “Precipitation influences net primary production” write “Precipitation increases net primary production”. Better yet, use numbers.

7. **Avoid using “significant” to mean “big” or “major”**: too easily confused with the results of a statistical text. Even if you are reporting the results of a statistical test, it’s better to report the numerical results instead. In fact, best to avoid "significantly" entirely.

8. **Define uncertainties**: probably half of initial submissions do not fully define the meaning of error bars and/or uncertainties. 95% confidence intervals, ranges, 2 sigma? Is the box plot showing the interquartile range, or something else? Tell us, in the figure legend.

9. **Consider accessibility**: try to use colors in a way that won’t create problems for the many readers with some form of color blindness (for a good discussion and design suggestions see

10. **Avoid rainbow color schemes**: see #endrainbow (on Twitter) for discussion, much of it from @ed_hawkins. For more, and palettes:
 a. https://www.giss.nasa.gov/tools/panoply/colorbars/
 b. http://colorbrewer2.org/#type=sequential&scheme=BuGn&n=3
 c. https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html

11. **Use divergent colors when appropriate**: in an anomaly graph, it’s often helpful to set zero as white and then ramp up to two colors. For example, panel f in Extended Data figure 6 in Cody Routson’s recent Nature paper
 a. https://www.nature.com/articles/s41586-019-1060-3
 b. https://www.nature.com/articles/s41586-019-1060-3/figures/10

12. **Simplify figures**: we often see maps with colors and contours used to display the same data. This can be confusing, as the reader may think that different datasets are being displayed on the same map. Normally, one or the other is sufficient.

13. **Use a declarative title**: reviewers (and editors) will often recommend a declarative title. Instead of a hypothetical title like “Trends in groundwater storage” try “A doubling of groundwater loss since 2010”.

14. **Follow a template for your abstract**: The abstract/first paragraph of Nature papers is fairly standardized, and it can be helpful to follow our template, even for non-Nature papers
 a. https://www.nature.com/documents/nature-summary-paragraph.pdf

15. **Provide short titles for figure legends**, but if possible, make the title declarative, like “Habitat fragmentation increases cloud condensation nuclei”.